Procurement teams are constantly facing challenges when it comes to increasing their addressable spend to rationalize supplier base and negotiate better terms with suppliers. This article is a deep dive and follow up on “addressable spend key challenges blog”. Here we specifically review data quality and homogeneity challenges and potential resolutions.
The Challenge:
Recently in the World Digital Procurement Summit (Berlin) we conducted a live poll survey on key challenges of expanding addressable spend. Across multiple industries and companies of different sizes almost half of the audience pointed toward lack of access to data and having multiple sources of data as main challenges. In the past blogs we have shown how technology can help bridge the IT support gaps but, in this article, we would like to address challenges and resolutions on harmonizing data across multiple sources of information.
Why Data Harmonization Matters:
Spend data is often spread across different systems/ locations. Besides, these data sets are being managed under often inconsistent governance as well as fully independent organization. The outcome is a mixture of variety of data formats, with different degrees of completeness, many duplications and unfortunately sometimes errors as an additional noise element. As a result, it becomes difficult to gain a consistent, granular and accurate view of supplier base. If no data transformation takes place, this can lead to sub-optimized insights, missed opportunities for savings, redundancies, and errors that impacts the bottom line.
Therefore, value and ROI associated to data harmonization is usually immense but very much underappreciated. The ideal state is having a smart engine to process, enrich and transform all variety of spend data to provide a consistent, improved, and accurate view ready for further analysis.
Today we review two aspects with high impact impact across both direct and indirect spend – the supplier records and transactions.
The SME Is Kept in the Loop:
Through this process, subject matter experts are kept in the loop and can review and overwrite if needed. This ensures that the machine learning algorithm capture these feedbacks and eliminate similar action for similar transactions into the future.
Insight:
Data harmonization is crucial for procurement success. The above process for merging procurement spend data can help your team achieve a single, unified view of spend data in a matter of days. With accurate and meaningful data, your team can make better decisions “exponentially faster” and realize value for your organization and end-customers.
In nec dictum adipiscing pharetra enim etiam scelerisque dolor purus ipsum egestas cursus vulputate arcu egestas ut eu sed mollis consectetur mattis pharetra curabitur et maecenas in mattis fames consectetur ipsum quis risus mauris aliquam ornare nisl purus at ipsum nulla accumsan consectetur vestibulum suspendisse aliquam condimentum scelerisque lacinia pellentesque vestibulum condimentum turpis ligula pharetra dictum sapien facilisis sapien at sagittis et cursus congue.
Convallis pellentesque ullamcorper sapien sed tristique fermentum proin amet quam tincidunt feugiat vitae neque quisque odio ut pellentesque ac mauris eget lectus. Pretium arcu turpis lacus sapien sit at eu sapien duis magna nunc nibh nam non ut nibh ultrices ultrices elementum egestas enim nisl sed cursus pellentesque sit dignissim enim euismod sit et convallis sed pelis viverra quam at nisl sit pharetra enim nisl nec vestibulum posuere in volutpat sed blandit neque risus.
Feugiat vitae neque quisque odio ut pellentesque ac mauris eget lectus. Pretium arcu turpis lacus sapien sit at eu sapien duis magna nunc nibh nam non ut nibh ultrices ultrices elementum egestas enim nisl sed cursus pellentesque sit dignissim enim euismod sit et convallis sed pelis viverra quam at nisl sit pharetra enim nisl nec vestibulum posuere in volutpat sed blandit neque risus.
Feugiat vitae neque quisque odio ut pellentesque ac mauris eget lectus. Pretium arcu turpis lacus sapien sit at eu sapien duis magna nunc nibh nam non ut nibh ultrices ultrices elementum egestas enim nisl sed cursus pellentesque sit dignissim enim euismod sit et convallis sed pelis viverra quam at nisl sit pharetra enim nisl nec vestibulum posuere in volutpat sed blandit neque risus.
Vel etiam vel amet aenean eget in habitasse nunc duis tellus sem turpis risus aliquam ac volutpat tellus eu faucibus ullamcorper.
Sed pretium id nibh id sit felis vitae volutpat volutpat adipiscing at sodales neque lectus mi phasellus commodo at elit suspendisse ornare faucibus lectus purus viverra in nec aliquet commodo et sed sed nisi tempor mi pellentesque arcu viverra pretium duis enim vulputate dignissim etiam ultrices vitae neque urna proin nibh diam turpis augue lacus.